Prove that $$\int_0^1x\log\left(1+x^2\right)\left[\log\left(\frac{1-x}{1+x}\right)\right]^3\operatorname{d}\!x$$ $$I=\frac{105}{8}\zeta(3)-\frac{7\pi^2}{4}\ln2-6\pi{G}+3\pi^2-\frac{3}{8}\pi^3-\frac{7}{64}\pi^4$$ where $G$ is the Catalan's constant. Additional reponse at FDP You are almost at the end. $\mathbf{I}\mathbf{\,continue}$ Using integration by parts, we have: $C=3\displaystyle\int_0^1\dfrac{\log^2x\log(1+x^2)}{x}dx-3\displaystyle\int_0^1\dfrac{\log^2x\log(1+x^2)}{1+x}dx-\displaystyle\int_0^1\dfrac{log^3x}{1+x}dx-\displaystyle\int_0^1\dfrac{log^3x}{1+x^2}dx+\displaystyle\int_0^1\dfrac{x\log^3x}{1+x^2}dx$
$D=\displaystyle\dfrac{3}{2}\int_0^1\dfrac{\log^2x\log(1+x^2)}{x}dx-\displaystyle\dfrac{3}{2}\int_0^1\dfrac{\log^2x\log(1+x^2)}{1+x}dx-\displaystyle\dfrac{3}{2}\int_0^1\dfrac{\log^2x\log(1+x^2)}{(1+x)^2}dx-\displaystyle\dfrac{1}{2}\int_0^1\dfrac{log^3x}{(1+x)^2}dx+\displaystyle\dfrac{1}{2}\int_0^1\dfrac{log^3x}{1+x^2}dx$ $2D-C=\displaystyle\int_0^1\dfrac{(1-x)\log^3x\log(1+x^2)}{(1+x)^3}dx=-3\displaystyle\int_0^1\dfrac{log^2x\log(1+x^2)}{(1+x)^2}dx+\displaystyle\int_0^1\dfrac{log^3x}{1+x}dx-\displaystyle\int_0^1\dfrac{xlog^3x}{1+x^2}dx$. } But,$\displaystyle\int_0^1\dfrac{log^3x}{1+x}dx=-\dfrac{7\pi^4}{120}$; and$ \displaystyle\int_0^1\dfrac{xlog^3x}{1+x^2}dx.=-\dfrac{7\pi^4}{1920}$
Remains to be assessed: $ \displaystyle\int_0^1\dfrac{log^2x\log(1+x^2)}{(1+x)^2}dx$, to be continued . Also, $\displaystyle\int_0^1\dfrac{\log^2x\log(1+x^2)}{(1+x)^2}dx=2\displaystyle\int_0^1\dfrac{\log\,x\log(1+x^2)}{x}dx-2\displaystyle\int_0^1\dfrac{\log\,x\log(1+x^2)}{(1+x)}dx-\displaystyle\int_0^1\dfrac{log^2x}{1+x}dx+\displaystyle\int_0^1\dfrac{log^2x}{1+x^2}dx+\displaystyle\int_0^1\dfrac{x\log^2x}{1+x^2}dx$
These integrals are know
$\displaystyle\int_0^1\dfrac{\log\,x\log(1+x^2)}{x}dx=-\dfrac{3}{16}\zeta(3)$; $\displaystyle\int_0^1\dfrac{\log\,x\log(1+x^2)}{(1+x)}dx=-\dfrac{\pi(G)}{2}-\dfrac{\pi^2}{16}ln2+\dfrac{3}{2}\zeta(3)$
Also, $\displaystyle\int_0^1\dfrac{\log^2x\log(1+x^2)}{(1+x)^2}dx=2\displaystyle\int_0^1\dfrac{\log\,x\log(1+x^2)}{x}dx-2\displaystyle\int_0^1\dfrac{\log\,x\log(1+x^2)}{(1+x)}dx-\displaystyle\int_0^1\dfrac{log^2x}{1+x}dx+\displaystyle\int_0^1\dfrac{log^2x}{1+x^2}dx+\displaystyle\int_0^1\dfrac{x\log^2x}{1+x^2}dx$
These integrals are know
$\displaystyle\int_0^1\dfrac{\log\,x\log(1+x^2)}{x}dx=-\dfrac{3}{16}\zeta(3)$; $\displaystyle\int_0^1\dfrac{\log\,x\log(1+x^2)}{(1+x)}dx=-\dfrac{\pi}{2}{G}-\dfrac{\pi^2}{16}ln2+\dfrac{3}{2}\zeta(3);\displaystyle\int_0^1\dfrac{log^2x}{1+x}dx=\dfrac{3}{2}\zeta(3); \displaystyle\int_0^1\dfrac{log^2x}{1+x^2}dx=\dfrac{\pi^3}{16}$
Finally,$\displaystyle\int_0^1\dfrac{log^2x\log(1+x^2)}{(1+x)^2}dx=\dfrac{75}{16}\zeta(3)+{\pi}G+\dfrac{\pi^2}{8}ln2+\dfrac{\pi^3}{16}$
And 2D-C=$\dfrac{297}{16}\zeta(3)-3{\pi}G-\dfrac{3}{8}{\pi^2}ln2-\dfrac{3}{16}{\pi^3}-\dfrac{7}{128}{\pi^4}$ We obtain also the result.