$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}{\cal I}&=\ \overbrace{%
\color{#66f}{\large\int_0^{\infty}t^{-1/2}\exp\pars{-a\bracks{t + t^{-1}}}\,\dd t}}
^{\ds{\color{#c00000}{t \equiv x^{2}}}}\ =\
2\int_{0}^{\infty}\exp\pars{-a\bracks{x^{2} + {1 \over x^{2}}}}\,\dd x
\end{align}
\begin{align}
{\cal I}&=2\exp\pars{-2a}\int_{0}^{\infty}\exp\pars{-a\bracks{x - {1 \over x}}^{2}}
\,\dd x\tag{1}
\end{align}
With $\ds{x \equiv {1 \over u}}$ we'll get:
\begin{align}
{\cal I}&=2\exp\pars{-2a}\int_{\infty}^{0}\exp\pars{-a\bracks{{1 \over u} - u}^{2}}
\,\pars{-\,{\dd u \over u^{2}}}
\end{align}
\begin{align}
{\cal I}&=2\exp\pars{-2a}\int_{0}^{\infty}\exp\pars{-a\bracks{{1 \over u} - u}^{2}}
{1 \over u^{2}}\,\dd u\tag{2}
\end{align}
$\pars{1}$ and $\pars{2}$ lead to:
\begin{align}
2{\cal I}&=2\exp\pars{-2a}\int_{0}^{\infty}
\exp\pars{-a\bracks{x - {1 \over x}}^{2}}\pars{1 + {1 \over x^{2}}}\,\dd x
\\[5mm]&=2\exp\pars{-2a}\int_{x\ =\ 0}^{x\ \to\ \infty}
\exp\pars{-a\bracks{x - {1 \over x}}^{2}}\,\dd\bracks{x - {1 \over x}}
\\[5mm]&=2\exp\pars{-2a}\,{1 \over \root{a}}
\underbrace{\int_{-\infty}^{\infty}\exp\pars{-x^{2}}\,\dd x}
_{\ds{\color{#c00000}{\root{\pi}}}}\ =\
{2\exp\pars{-2a} \over \root{a}}\,\root{\pi}
\end{align}
$$
{\cal I}=
\color{#66f}{\large\int_0^{\infty}t^{-1/2}\exp\pars{-a\bracks{t + t^{-1}}}\,\dd t
={\exp\pars{-2a} \over \root{a}}\,\root{\pi}}
$$
$\ds{{\tt\mbox{The Gamma function}}\ \Gamma\pars{z}\ \mbox{appears in the evaluation of the Gaussian integral !!!}}$