For $x > 1$, the geometric series $\sum\limits_{i = 0}^n{x}^i$ is equal to $\frac{x^{n+1}-1}{x-1}$.
By getting the limit,
$$ \lim\limits_{n \rightarrow \infty} \sum\limits_{i = 0}^n{x}^i = \lim\limits_{n \rightarrow \infty} \frac{x^{n+1}-1}{x-1} $$
$$ = \infty $$
However, the generating function $\sum\limits_{n \geq 0}x^n$ is equal to $\frac{1}{1-x}$ since
$$ \sum\limits_{n \geq 0}{x}^n - x\sum\limits_{n \geq 0}{x}^n= (1 + x + x^2 + x^3 + \dots) - (x + x^2 + x^3 + \dots) = 1 $$
$$ \Rightarrow (1-x)\sum\limits_{n \geq 0}{x}^n= 1 $$
$$ \Rightarrow \sum\limits_{n \geq 0}{x}^n= \frac{1}{1-x} $$
Obviously, $\frac{1}{1-x}$ is a finite number.
What is the underlying concept that makes them yield different results?