Let: $ b_1=\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \end{bmatrix} b_2=\begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ \end{bmatrix} b_3=\begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \\ \end{bmatrix} b_4=\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ \end{bmatrix}$
Show that a matrix $ A \in \mathcal{M}_{4 \times 4} $ is invertible if only if exist $x_1,x_2,x_3,x_4 \in \mathbb{R}^4$ such that $Ax_i=bi $ for $i=1,2,3,4$
The first implication es trivial since you can take $A^{-1}b_i$ as a solution but i can't prove the second implication. I've tried to use the fact if A is non invertible. Then its column vectors are Linearly dependent ¿Can you help me?