$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
\color{#c00000}{{\pars{1 + z}^{n + 1} \over z^{k + 1}}}&
={\pars{1 + z}\pars{1 + z}^{n} \over z^{k + 1}}
=\color{#c00000}{%
{\pars{1 + z}^{n} \over z^{k + 1}} + {\pars{1 + z}^{n} \over z^{k}}}
\end{align}
Then,
\begin{align}
\sum_{m\ =\ 0}^{n + 1}{n + 1 \choose m}z^{m - k - 1}
&=\sum_{m\ =\ 0}^{n}{n \choose m}z^{m - k - 1}
+\sum_{m\ =\ 0}^{n}{n \choose m}z^{m - k}
\\[5mm]z^{-k - 1} + \sum_{m\ =\ 1}^{n + 1}{n + 1 \choose m}z^{m - k - 1}
&=z^{-k - 1} + \sum_{m\ =\ 1}^{n}{n \choose m}z^{m - k - 1}
+\sum_{m\ =\ 1}^{n + 1}{n \choose m - 1}z^{m - 1 - k}
\\[5mm]z^{n - k} + \sum_{m\ =\ 1}^{n}{n + 1 \choose m}z^{m - k - 1}
&=\sum_{m\ =\ 1}^{n}{n \choose m}z^{m - k - 1}
+\sum_{m\ =\ 1}^{n}{n \choose m - 1}z^{m - 1 - k} + z^{n - k}
\end{align}
$$
\sum_{m\ =\ 1}^{n}\color{#c00000}{{n + 1 \choose m}}z^{m - k - 1}
=\sum_{m\ =\ 1}^{n}\bracks{\color{#c00000}{{n \choose m} + {n \choose m - 1}}}
z^{m - k - 1}
$$
$$
\color{#66f}{\large{n + 1 \choose m}}
=\color{#66f}{\large{n \choose m} + {n \choose m - 1}}\,,\qquad 1\ \leq\ m\ \leq\ n
$$