$$\displaystyle \sum\limits_{}^{} \dfrac{1}{k(ln(k)^2)}$$
Integral test
$$\int_{} \frac {1}{u^2} du = \int u^{-2} du = \frac {-1}{u} = \frac{-1}{\ln k} +c$$
$$\displaystyle \sum\limits_{}^{} \dfrac{1}{k(ln(k)^2)}$$
Integral test
$$\int_{} \frac {1}{u^2} du = \int u^{-2} du = \frac {-1}{u} = \frac{-1}{\ln k} +c$$
One way is to use the Cauchy Condensation Test
See that the terms of the sequence are non negative and decreasing, so $\displaystyle \sum\limits_{k=2}^{\infty} \dfrac{1}{k(\ln^2 k)}$ converges if and only if $\displaystyle \sum\limits_{k=2}^{\infty} \dfrac{2^k}{2^k(\ln^2 2^k)} = \dfrac{1}{\ln^2 2}\sum\limits_{k=2}^{\infty} \dfrac{1}{k^2}$ converges (which is true).
Since, $\displaystyle \sum\limits_{k=2}^{\infty} \frac{1}{k^2} \le \displaystyle \sum\limits_{k=2}^{\infty} \frac{1}{k(k-1)} = \displaystyle \sum\limits_{k=2}^{\infty} \left(\frac{1}{k-1} - \frac{1}{k}\right) = 1$ (telescopes).
Using the integral test as you suggested
$$\sum_{k=2}^{\infty} \frac{1}{k \ln^2k} < \int_{2}^{\infty} \frac{1}{x\ln^2x} dx = \frac{1}{\ln (2)}$$
where $\int \frac{1}{x \ln^2x} dx = - \frac{1}{\ln x} + C$