We have that
$$\frac{z_1+\cdots+z_n}{n}-A=\frac{(z_1-A)+\cdots+(z_n-A)}{n},$$
so it suffices to prove the statement when $A=0$. The $\epsilon$-$N$ definition of the limit tells us that for any positive $\epsilon>0$, there is an $N$ such that $n>N\implies |z_n|<\epsilon$, which subsequently implies
$$\left|\frac{z_1+\cdots+z_{k+N}}{k+N}\right|=\left|\frac{z_1+\cdots+z_N}{k+N}\,+\,\frac{z_{N+1}+\cdots+z_{N+k}}{k+N}\right|$$
$$\le \left|\frac{z_1+\cdots+z_N}{k+N}\right|\,+\,\left|\frac{z_{N+1}+\cdots+z_{N+k}}{k+N}\right|\le \left|\frac{z_1+\cdots+z_N}{k+N}\right|+\epsilon\stackrel{k\to\infty}{\longrightarrow}\epsilon.$$
(We also used the triangle inequality above.) Now take $\epsilon\to0^+$ and use the squeeze theorem.