1

$$\lim_{n\rightarrow\infty}\left( \frac{1*3*5*...*(2n-1) }{ 2*4*6*...*(2n)}\right)^3=0$$ Having products at fractions I cant figure out how to calculate this limit.

GorillaApe
  • 1,071

1 Answers1

1

Let $$a_n:=\frac{1\cdot3\cdot\ldots\cdot(2n-1)}{2\cdot4\cdot\ldots\cdot(2n)} =\frac{(2n)!}{2^{2n}(n!)^2}$$

Then use the Stirling formula: $$ n! \sim \sqrt {2\pi n} n^n e^{-n} \\ a_n \sim \frac{\sqrt {4\pi n} (2n)^{2n} e^{-2n}} {2^{2n} 2\pi n n^{2n} e^{-2n}} = \frac{\sqrt {4\pi n} } {2\pi n } \to 0 $$

mookid
  • 28,236