Let : $X \to Y$ be a function. Show that if $f$ is injective then $f(A \cap B) = f(A) \cap f(B)$ for sets $A \subseteq X$ and $B \subseteq X$.
My answer :
Suppose $f$ is injective and $f(x) \in f(A \cap B) \Leftrightarrow x \in A \cap B \Leftrightarrow x \in A$ and $x \in B \Leftrightarrow $ $ f(x) \in f(A)$ and $f(x) \in f(B) \Leftrightarrow f(x) \in f(A) \cap f(B)$. Therefore as each step is an equivalence it can be read backwards so $f(A \cap B) \subseteq f(A) \cap f(B)$ and $f(A) \cap f(B)$ $ \subseteq f(A \cap B)$ meaning $f(A \cap B) = f(A) \cap f(B)$.
What I don't understand is where this proof breaks down if $f$ is not injective ?