$$\int_{0}^{1} Li_k(x) dx$$
$$Li_k(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^k}$$
$$\int_{0}^{1} Li_k(x) \,dx = \sum_{n=1}^{\infty} \int_{0}^{1} \frac{x^n}{n^k} \,dx$$
From Fubini's theorem, I suppose we were allowed to interchange.
$$\int_{0}^{1} Li_k(x) \,dx = \sum_{n=1}^{\infty} [\frac{x^{n+1}}{(n+1)n^k}]_{0}^{1}$$
$$\int_{0}^{1} Li_k(x) \,dx = \sum_{n=1}^{\infty} \frac{1}{(n+1)n^k}$$
Let $$S = \displaystyle \sum_{n=1}^{\infty} \frac{1}{(n+1)n^k}$$
I am having the big trouble in evaluating the sum $S$.