I'd love your help with deciding whether the following integral converges or not and in what conditions: $\int_{1}^{\infty}\frac{\sin x}{x}$.
1. First, I wanted to use Dirichlet criterion: let $f,g: [a,w) \to R$ integrable function, $f$ is monotonic and $g$ is continuous and $f \in C^1[a,w]$. If in addition to these conditions, $G(x)=\int_{a}^{x}g(t)$ is bounded and $\lim_{x \to w}f(x)=0$ so $\int_{a}^{x}fg$ converges. I can choose $f=\frac{1}{x}$ and $g(x)=\sin x$, they applies all the conditions,(aren't they?) so why can't I use Dirichlet for this integral?
2. I used Wolfarm|Alpha and it says that $\int_{1}^{\infty}\frac{\sin x}{x}dx$ does converge to $\frac\pi2$ .is it only a conditional convergence? (and if so, does is count as non convergence?)
3. I was told that this integral does not absolute converges, meaning $\int_{1}^{\infty}\frac{|\sin x|}{x}dx$ does not converges, How can I prove it?
Thanks a lot.