Yes, we can use the IVT to prove Rolle's theorem, but not in the way you expect.
The idea is to construct a sequence of nested intervals, each half as wide as the previous, where the value of $f$ is the same at both endpoints. These will converge to a point where $f'(x)=0$.
Set $a_0=a$ and $b_0=b$. The $n$th interval will be $[a_n,b_n]\subset[a_{n-1},b_{n-1}]$, with length $b_n-a_n=(b_{n-1}-a_{n-1})/2=(b_0-a_0)/2^n$.
(We'll start with $n=0$ and use induction, of course.) Consider the function
$$g(x)=f(x)-f\left(x+\tfrac{b_n-a_n}{2}\right)$$
defined for $a_n\leq x\leq\tfrac{a_n+b_n}{2}$, so $\tfrac{a_n+b_n}{2}\leq x+\tfrac{b_n-a_n}{2}\leq b_n$. Note that $g$ is continuous on this interval, because $f$ is continuous. Also, since $f(a_n)=f(b_n)$,
$$g(a_n)=f(a_n)-f\left(\tfrac{a_n+b_n}{2}\right)=-g\left(\tfrac{a_n+b_n}{2}\right).$$
If this value is $g(a_n)=0$, then $f(a_n)=f\left(\tfrac{a_n+b_n}{2}\right)=f(b_n)$, and we can simply bisect the interval and proceed with either half: $[a_{n+1},b_{n+1}]=\left[a_n,\tfrac{a_n+b_n}{2}\right]$ or $\left[\tfrac{a_n+b_n}{2},b_n\right]$. (If this happens for both $n=0$ and $n=1$, then we should take the interval not containing $a_0$ nor $b_0$, so we don't get convergence to an endpoint. That is, $[a_2,b_2]=\left[\tfrac{3a+b}{4},\tfrac{a+b}{2}\right]$ or $\left[\tfrac{a+b}{2},\tfrac{a+3b}{4}\right]$, instead of $\left[a,\tfrac{3a+b}{4}\right]$ or $\left[\tfrac{a+3b}{4},b\right]$.)
If $g(a_n)\neq0$, then $g$ has opposite signs at the endpoints of its domain, so by IVT, there is some $x\in\left(a_n,\tfrac{a_n+b_n}{2}\right)$ such that $g(x)=0$. Set $[a_{n+1},b_{n+1}]=\left[x,x+\tfrac{b_n-a_n}{2}\right]$, so $f(a_{n+1})=f(b_{n+1})$.
Now we have the desired sequence of nested intervals; they converge to some point $c\in(a,b)$.
We assumed $f$ is differentiable on $(a,b)$, so $f'(c)$ exists.
If $c=a_m$ for some $m\in\mathbb N$, then $a_n=c$ for all $n>m$ (since $c=a_m\leq a_n\leq c$ by the nesting). This implies
$$0=\frac{f(b_n)-f(a_n)}{b_n-a_n}=\frac{f(b_n)-f(c)}{b_n-c}$$
$$0=\lim_{n\to\infty}\frac{f(b_n)-f(c)}{b_n-c}=f'(c).$$
Similarly if $c=b_m$ for some $m$ then $f'(c)=0$. So assume $c\in(a_m,b_m)$ for all $m$. (Thus the following denominators are non-zero.)
$$0=\frac{f(b_n)-f(a_n)}{b_n-a_n}=\frac{f(b_n)-f(c)+f(c)-f(a_n)}{b_n-a_n}$$
$$=\frac{b_n-c}{b_n-a_n}\cdot\frac{f(b_n)-f(c)}{b_n-c}+\frac{c-a_n}{b_n-a_n}\cdot\frac{f(c)-f(a_n)}{c-a_n}.$$
From the definition of the derivative, for any $\varepsilon>0$, there exists $m\in\mathbb N$ such that
$$-\varepsilon<\frac{f(b_n)-f(c)}{b_n-c}-f'(c)<\varepsilon$$
for all $n>m$, and there also exists $l\in\mathbb N$ such that
$$-\varepsilon<\frac{f(a_n)-f(c)}{a_n-c}-f'(c)<\varepsilon$$
for all $n>l$. Therefore, for all $n>\max\{l,m\}$,
$$0=\frac{b_n-c}{b_n-a_n}\cdot\frac{f(b_n)-f(c)}{b_n-c}+\frac{c-a_n}{b_n-a_n}\cdot\frac{f(c)-f(a_n)}{c-a_n}$$
$$<\frac{b_n-c}{b_n-a_n}\cdot\Big(f'(c)+\varepsilon\Big)+\frac{c-a_n}{b_n-a_n}\cdot\Big(f'(c)+\varepsilon\Big)$$
$$=(1)\big(f'(c)+\varepsilon\big)$$
$$0-\varepsilon<f'(c)$$
and similarly
$$0=\frac{b_n-c}{b_n-a_n}\cdot\frac{f(b_n)-f(c)}{b_n-c}+\frac{c-a_n}{b_n-a_n}\cdot\frac{f(c)-f(a_n)}{c-a_n}$$
$$>\frac{b_n-c}{b_n-a_n}\cdot\Big(f'(c)-\varepsilon\Big)+\frac{c-a_n}{b_n-a_n}\cdot\Big(f'(c)-\varepsilon\Big)$$
$$=(1)\big(f'(c)-\varepsilon\big)$$
$$0+\varepsilon>f'(c)$$
so we have $-\varepsilon<f'(c)<\varepsilon$. Since $\varepsilon$ was arbitrary, we conclude that $f'(c)=0$.