Evaluate
$$\displaystyle \int e^{x\sin x+\cos x}\left(\frac{x^4\cos^3 x-x\sin x+\cos x}{x^2\cos^2 x}\right)dx$$
$\bf{My\; Try::}$
Let $$\begin{align}I &= \int e^{x\sin x+\cos x}\left(\frac{x^4\cos^3 x-x\sin x+\cos x}{x^2\cos^2 x}\right)dx\\ &=\int e^{x\sin x+\cos x}\left(x^2\cos x+\frac{\cos x-x\sin x}{x^2\cos^2 x}\right)dx\\ &= \int x\cdot e^{x\sin x+\cos x}\left(x\cos x\right)dx+\int e^{x\sin x+\cos x}\left(\frac{\cos x-x\sin x}{x^2\cos^2 x}\right)dx\\ \end{align}$$
Now Let $x\sin x+\cos x = t\;,$ Then $x\cos x\,dx = dt$ and Integration by parts for $\bf{1^{st}}$ Integral
So $$\displaystyle I = x\cdot e^{x\sin x+\cos x}-\int e^{x\sin x+\cos x}dx+\int e^{x\sin x+\cos x}\left(\frac{\cos x-x\sin x}{x^2\cos^2 x}\right)dx$$
Now I do not understand how to solve after that.