\begin{align*} x(t) &= e^{-t/2}\left(\cos(\sqrt{11}t/2)+\frac1{\sqrt{11}}\sin(\sqrt{11}t/2)\right)\\ &= \frac{\sqrt{12}}{\sqrt{11}} e^{-t/2} \cos(\sqrt{11}t/2)-\phi \end{align*} where $\phi=\tan^{-1}(1/\sqrt{11})$.
Original picture: https://i.stack.imgur.com/QCiFW.png
How is arctan derived in this example? Probably some kind of identity has been used, like $\frac{\cos(x)}{\sin(x)}=\frac{1}{\tan(x)}$