What is the proof that: $$\forall \ a,b,c\geq 0:\quad a\ b\ c\geq(a-b+c)(a+b-c)(b+c-a)$$
I tried :
we can write that expression $(a-b+c)(a+b-c)(b+c-a)$ as $$-a^3+a^2 b+a^2 c+a b^2-2 a b c+a c^2-b^3+b^2 c+b c^2-c^3$$
then $$a\ b\ c\geq(a-b+c)(a+b-c)(b+c-a)$$ $$\Longleftrightarrow $$ $$a b c \geq -a^3+a^2 b+a^2 c+a b^2-2 a b c+a c^2-b^3+b^2 c+b c^2-c^3$$
Now consider $f(a)=abc-(-a^3+a^2 b+a^2 c+a b^2-2 a b c+a c^2-b^3+b^2 c+b c^2-c^3)$ for $b,c$ fixed
if i follow the metode of Quang Hoang
let $a+b-c=2x,b+c-a=2y,c+a-b=2z$, then the inequality becomes $$(y+z)(z+x)(x+y)\ge 8xyz.\tag{1}$$
for $x,y,z \geq 0$ we use AM-GM inequality $$(y+z)(z+x)(x+y)\ge 2(yz)^{1/2}(2zx)^{1/2}(2xy)^{1/2}.\tag{1}$$ but other case of $x,y,z$ is not clear.
- i will be appreciated if someone could explain it with more detail