$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
&\color{#66f}{\large\int_{0}^{2\pi}{\cos\pars{50x} \over 5 + 4\cos\pars{x}}\,\dd x}
=\Re\int_{0}^{2\pi}{\expo{50x\ic} \over 5 + 4\cos\pars{x}}\,\dd x
\\[5mm]&=\Re\oint_{\verts{z}\ =\ 1}{z^{50} \over 5 + 4\pars{z^{2} + 1}/\pars{2z}}
\,{\dd z \over \ic z}
=2\,\Im\oint_{\verts{z}\ =\ 1}{z^{50} \over 4z^{2} + 10z + 4}\,\dd z
\\[5mm]&=2\,\Im\oint_{\verts{z}\ =\ 1}{z^{50} \over 4\pars{z + 1/2}\pars{z + 2}}
\,\dd z
=2\,\Im\bracks{2\pi\ic\,{\pars{-1/2}^{50} \over 4\pars{-1/2 + 2}}}
={\pi \over 3 \times 2^{49}}
\\[5mm]&=\color{#66f}{\large{\pi \over 1688849860263936}}
\approx {\tt 1.86 \times 10^{-15}}
\end{align}