Prove:
$\displaystyle \lim_{x\to 1} \sqrt{x} = 1$
$\displaystyle |\sqrt{x} - 1| < \epsilon \space \text{such that}\space |x - 1| < \delta$
Let $|x - 1| < 1 \implies |x| < 2 \implies -2 < x < 2$
$\sqrt{x} - 1 \implies \sqrt{x} - 1 < \sqrt{2} - 1$
$|\sqrt{x} - 1| < \sqrt{2} -1 $
$-2 < x < 2$
$ -3 < x - 1 < 1 \implies 1 < |x - 1| < 3$
$1 > \sqrt{2} - 1$
$\therefore |\sqrt{x} - 1| < \sqrt{2} - 1 < 1 < |x - 1| < \delta$
Finally, $|\sqrt{x} - 1| < |x - 1| < \delta$
Therefore, $\delta = \min(1, \epsilon)$ $\space \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \blacksquare $