Here a proof under the extra condition that singletons are closed. Actually I am not sure whether this condition can be missed.
Note that $A'\subseteq\overline{A}$ so that $\overline{A'}\subseteq\overline{A}$.
Based on $x\notin A'$ we will prove that $x\notin\overline{A'}$.
Let $x\notin A'$. Then $x\in U$ and $U\cap A=\emptyset\vee U\cap A=\left\{ x\right\} $
for some open set $U$.
If $U\cap A=\emptyset$ then $x\notin\overline{A}$
and consequently $x\notin\overline{A'}\subseteq\overline{A}$, and
we are ready.
Now the other possibility: $U\cap A=\left\{ x\right\} $.
Assume that $x\in\overline{A'}$ . Then $U\cap A'\neq\emptyset$ so
there must be some $y\in U\cap A'$. Here $x\notin A'$ tells us that
$x\neq y$. Then $V:=U-\left\{ x\right\} $ is an open set (here it
is used that singletons are closed) with $y\in V$ and $V\cap A=\emptyset$
contradicting that $y\in A'$.
This contradiction allows us to conclude that $x\notin\overline{A'}$.