HINT:
Like Euler: for $P$ of degree $d\ge 1$ we have
$$\lim_{n\to \infty} \frac{|P(n)|^{\frac{1}{d}} }{n} = c \ne 0$$
so
$$\sum_{n\ge n_0} \frac{1}{|P(n)|^{\frac{1}{d}}} = \infty$$
If only the primes $p_1$, $\ldots$, $p_l$ divided any of the numbers $|P(n)|$, $n \ge n_0$ then the above sum would be
$$\le \prod_{k=1}^l \left( \sum_{n\ge 0} \frac{1}{p_k^{\frac{n}{d}} }\right) = \prod_{k=1}^l \frac{1}{ 1 - \frac{1}{p_k^{1/d}} }< \infty $$
which is not possible. In fact we showed that if $\mathcal{P}$ is the set of primes that divide at least one of the terms of a sequence $(a_n)_n$ with polynomial growth ( $a_n = \mathcal{O}(n^d)$ ), then
$$\prod_{p \in P} \frac{1}{ 1 - \frac{1}{p^{1/d}} } = \infty$$
or, equivalently:
$$\sum_{p \in P} \frac{1}{p^{1/d}}=\infty$$