I saw the following:
$$\begin{align} \int \tan x \ \mathrm{d}x &= \int \sin x \sec x \ \mathrm{d}x \\ \int \tan x \ \mathrm{d}x &= -\cos x \sec x - \int - \cos x \sec x \tan x \ \mathrm{d}x \\ \int \tan x \ \mathrm{d}x &= -1 + \int \tan x \ \mathrm{d}x \\ 0 &= -1 \end{align}$$
I figure the mistake has to do with constants of integration, but I can't quite point it. Can someone explain to me what happens, please? I browsed a bit around here, looking for $0=1$ and the tag fake-proofs
, but I didn't found it, so I apologize in advance in case this is a duplicate of something (just provide me the link and I'll delete this, no problems).
Thanks!