Let $a_1,...,a_n>0$. The arithmetic mean is defined by $A(a_1,...,a_n) =\frac{a_1+...+a_n}{n}$ and the geometric mean by $G(a_1,...,a_n)=\sqrt[n]{a_1\cdot ...\cdot a_n}$.
Let $S(n)$ be the statement: $$\forall a_1,...,a_n >0: G(a_1,...,a_n) \leq A(a_1,...,a_n)$$
a) Prove $S(2)$ is true
b) Let $n\geq 2$. Prove that if $S(2)$ and $S(n)$ are true, then also $S(2n)$.
c) Prove for all $n\geq 2$ that if $S(n+1)$ is true, then $S(n)$ is true. [Hint: use $G(a_1,...,a_n,G(a_1,...,a_n))=G(a_1,...,a_n)$].
d) Explain why this shows that $S(n)$ is true for all $n\geq 2$
a) This is easy to prove from $(a_1 - a_2)^2\geq 0$
After this, I am completely stumped. Any hints or ideas in which to build on?