If $f_n, f \in L^p, 1\leq p < +\infty$ and $f_n \rightarrow f$ almost everywhere, and $\|f_n\|_p \rightarrow \|f\|_p$, then $f_n\rightarrow f$ as for the norm.
Could you give me some hints how to show it??
What does convergence as for the norm mean??
EDIT:
From Fatou`s lemma we have that $$\int \lim \inf [2^{p-1}(|f_n|^p+|f|_p)-|f_n-f|^p]d\mu \leq \\ \lim \inf \int [2^{p-1}(|f_n|^p+|f|^p)-|f_n-f|^p]d\mu \\ \Rightarrow 2^{p-1}\int \lim \inf (|f_n|^p+|f|^p)d\mu+\int \lim \inf (-|f_n-f|^p)d\mu \leq 2^{p-1}(\lim \inf \int |f_n|^pd\mu +\lim \inf \int |f|^pd\mu )+\lim \inf (-\int |f_n-f|^p d\mu) \\ \Rightarrow 2^{p-1}[\int \lim \inf |f_n |^pd \mu+\int \lim \inf |f|^pd \mu]-\int \lim \sup |f_n-f|^pd \mu \leq 2^{p-1}[\lim \inf \int |f_n|^pd \mu+\lim \inf \int |f|^p d\mu]-\lim \sup \int |f_n-f|^pd \mu \ \ \ \ \ (*) $$
Knowing that $||f_n||_p\rightarrow ||f||_p \Rightarrow \left ( \int |f_n|^p\right )^{1/p}\rightarrow \left ( \int |f|^p\right )^{1p}$ , we have that $\lim \inf |f_n|^p=|f|^p$
Therefore, $$(*)\Rightarrow 2^{p-1}\int (|f|^pd \mu+\int |f|^pd\mu)-\int \lim \sup |f_n-f|^pd \mu \leq 2^{p-1}(\lim \inf \int |f_n|^pd \mu +\int |f|^pd \mu)-\lim \sup \int |f_n-f|^pd \mu \\ \Rightarrow 2^{p-1}\int |f|^pd \mu-\int \lim \sup |f_n-f|^pd \mu \leq 2^{p-1}\lim \inf ||f_n||^p_p-\lim \sup \int |f_n-f|^pd \mu \\ \Rightarrow 2^{p-1}||f||^p_p-\int \lim \sup |f_n-f|^pd \mu \leq 2^{p-1} ||f||^p_p-\lim \sup \int |f_n-f|^pd \mu \\ \Rightarrow \lim \sup \int |f_n-f|^pd \mu \leq \int \lim\sup |f_n-f|^pd \mu \\ \Rightarrow \lim \sup ||f_n-f||^p_p \leq \int \lim \sup |f_n-f|^pd \mu =0, \text{ since } f_n\rightarrow f \text{ almost everywhere } $$
So, we conclude that $||f_n-f||_p\rightarrow 0$.