Let now $A ∈ L(V)$, where $V$ be an Euclidean vector space.
I need to show that:
$$(\operatorname{Im}{A})^⊥ = \ker(A^⊤)$$ $$\operatorname{Im}{(A^⊤)}= (\ker A)^⊥$$
Let now $A ∈ L(V)$, where $V$ be an Euclidean vector space.
I need to show that:
$$(\operatorname{Im}{A})^⊥ = \ker(A^⊤)$$ $$\operatorname{Im}{(A^⊤)}= (\ker A)^⊥$$
That should do it
$$ \forall y \in V.\forall x \in V. \langle Ax, y \rangle = \langle x, A^Ty \rangle$$