1

Let now $A ∈ L(V)$, where $V$ be an Euclidean vector space.

I need to show that:

$$(\operatorname{Im}{A})^⊥ = \ker(A^⊤)$$ $$\operatorname{Im}{(A^⊤)}= (\ker A)^⊥$$

qexi
  • 167

1 Answers1

1

That should do it

$$ \forall y \in V.\forall x \in V. \langle Ax, y \rangle = \langle x, A^Ty \rangle$$

user1868607
  • 5,791
nicolas
  • 697