How to prove the following relation?
$$ \, _2{F}_1(K,K;K+1;1-m) = \frac{\Gamma (K+1)}{\Gamma (K)} \int_0^{\infty } \frac{1}{(1+x) (m+x)^K} \, dx $$
where $_2{F}_1(.,.;.;.)$ is the hypergeometric function, $m\in\mathbb{R}^+$ , and $K \in\mathbb{N}$.