Show $f(x):=\sqrt{x}$ is uniformly continuous on $[0,1]$.
What I did: Need to show that $\forall \varepsilon>0: \exists\delta>0$ such that
$\forall x,y\in(0,1): |x-y|<\delta\Rightarrow|f(x)-f(y)|<\varepsilon$
Choose $\delta=\varepsilon^2$.
then for $x,y\in(0,1)$ with $|x - y| < \delta$,
$|f(x)-f(y)|=|\sqrt{x}-\sqrt{y}|$
$|\sqrt{x}-\sqrt{y}|\le|\sqrt{x}+\sqrt{y}|$
$|\sqrt{x}-\sqrt{y}|^2\le|\sqrt{x}-\sqrt{y}||\sqrt{x}+\sqrt{y}| =|x-y|< \varepsilon^2$
$|\sqrt{x}-\sqrt{y}|\le\sqrt{|x-y|}<\sqrt{\varepsilon^2}=\varepsilon$