Using your property, you have
\begin{align}
(x^3+x^2+1)^{1/3}-(x^2+x)^{1/2}&=\frac{(x^3+x^2+1)^2-(x^2+x)^3}{(x^3+x^2+1)^{5/3}+\cdots+(x^2+x)^{5/2}}\\ \ \\
&=\frac{-x^5-2x^4+x^3+2x^2+1}{(x^3+x^2+1)^{5/3}+\cdots+(x^2+x)^{5/2}}\\ \ \\
&=\frac{-1-2/x+1/x^2+2/x^3+1/x^5}{(1+1/x+1/x^3)^{5/3}+\cdots+(1+1/x)^{5/2}}\\ \ \\
&\to-\frac16
\end{align}
(where in the last equality you divide numerator and denominator by $x^5$, and then use the fact that there are six terms in the denominator).
Also here is the way to do this limit that comes naturally to me. From the binomial series, $(1+a)^b\simeq 1+\frac ab$ for small $a$. Then, for small $x$,
\begin{align}
(x^3+x^2+1)^{1/3}-(x^2+x)^{1/2}&=x\,\left[ (1+1/x+1/x^3)^{1/3}-(1+1/x)^{1/2} \right]\\ \ \\
&\simeq x\,\left[1+\frac1{3x}+\frac1{3x^3}-1-\frac1{2x} \right]\ \\ \ \\
&=x\,\left[-\frac{1}{6x}+\frac1{3x^3} \right]=-\frac16+\frac1{3x^2}\\ \ \\
&\to-\frac16.
\end{align}