I will prove that
$$\sum_{n=1}^\infty \frac{H_n}{n^2} = 2\zeta(3)$$
Your sum can be obtained by manipulating the indices.
First use that
$$H_n = \int^1_0 \frac{1-x^n}{1-x}\,dx$$
$$\int^1_0 \frac{1}{1-x}\sum_{n = 1}^\infty\frac{1-x^n }{n^2}\,dx = \int^1_0 \frac{\zeta(2)-\mathrm{Li}_2(x)}{1-x}dx$$
Now use the duplication formula for dilogarithm
$$\zeta(2)-\mathrm{Li}_2(x) = \mathrm{Li}_2(1-x)+\log(x)\log(1-x)$$
Hence we have
$$\int^1_0 \frac{\mathrm{Li}_2(1-x)+\log(x)\log(1-x)}{1-x}dx = \int^1_0 \frac{\mathrm{Li}_2(x)+\log(1-x)\log(x)}{x}dx$$
$$\int^1_0 \frac{\mathrm{Li}_2(x)}{x} = \mathrm{Li}_3(1) =\zeta(3)$$
$$\int^1_0 \frac{\log(1-x)\log(x)}{x}dx =\int^1_0 \frac{\mathrm{Li}_2(x)}{x} = \zeta(3) $$
$$\sum_{n=1}^\infty \frac{H_n}{n^2} = 2 \zeta(3)$$
Another approach
we have the following general formula
$$\tag{1} \sum_{k\geq 1} \frac{H_k}{k^2} \, x^{k} = \text{Li}_3(x)-\, \text{Li}_3(1-x)+\, \log(1-x) \text{Li}_2(1-x)\\ +\frac{1}{2}\log(x) \log^2(1-x)+\zeta(3)$$
Let $x = 1$ to get the desired formula.
(1) can be derived using the approach in this thread.