I am felling rather frustrated now, after taking a long time to study differential geometry, but with little progress...
Indeed my major is mainly numerical analysis. I am studying modern geometry, because I am interested in some points of geometric mechanics, like in Arnold and Jerry Marsden's beautiful books. And on the other hand, I am preparing for some researches related to some "geometric" topics, like general relativity.
I began to study differential manifold etc. from undergraduate, mostly by myself. I began by S.S.Chern's book. I thought it was a mistake, because that book is very formal. Indeed I read that for several times, but when I close the book, I did not know what I have read...
Now the situation gets better, but still difficult... I try to drive the formulations by myself, try to write them down. But the progress is still quite slow.
When I deal with PDEs, I can see clearly the essential points in estimates. But when I turn to Riemannian geometry, Lie groups etc., I get lost in the confusing notions, and have no idea to start MY OWN proof. For example, I used much time to understand what a "pull back" is. It seems no two books use the same notation!
So could you give me some suggestions? Is it because these stuffs are indeed much harder then analysis, or I haven't found the right way?
Thanks a lot!