Let, $A$ & $B$ are $n\times n$ positive definite matrices & $I$ be the $n\times n$ identity matrix. Then which of the followings are positive definite?
(a) $A+B$
(b) $ABA$
(c) $A^{2}+I$
(d) $AB$
I know that, $A^{2}+I$ is positive definite, as if $\lambda$ is an eigen value of $A$ then $(1+\lambda^2)$ is an eigen value of $A^2+I$.
I think (d) is true.Suppose, $\lambda_{1}$ & $\lambda_{2}$ be two eigen values of $A_{2\times 2}$ matrix & $\beta_{1}$, $\beta_{2}$ be two eigen values of $B_{2\times 2}$ matrix.
Now, $det(AB)=det(A)det(B)=\lambda_{1}.\lambda_{2}.\beta_{1}.\beta_{2}.$
As, $\lambda_{1},\lambda_{2},\beta_{1},\beta_{2}$ are all positive so eigen values of $AB$ are all positive, so $AB$ is positive definite.
Similarly, $ABA$ is positive definite.But I am not sure & I have no idea about $A+B$.