Let us define the set $$C=\bigg\{ \sum_{n=1}^\infty a_n 3^{-n}: a_n=0,2 \bigg\}$$ This is the Cantor set, could anyone help me prove it is uncountable? I've been trying a couple of approaches, for instance assume it is countable, list the elements of $C$ as decimal expansions, then create a number not in the list, I am having trouble justifying this though.
Secondly i've been trying to create a function $f$ such that $f(C)=[0,1]$.
Many thanks