I had the question of $0^{-1}$ on a math test and I naturally assumed that this evaluates to zero, but from what I have seen from various sources it is equal to infinity which I do not quite understand. I would sooner believe that this it is just undefined.
-
5You are looking at $1/0$ which is famously undefined. It does not evaluate to $0$ nor to $\infty $. – Ittay Weiss Nov 07 '14 at 00:50
-
1They're not really equal in the strictest mathematical sense. – Jose Arnaldo Bebita Dris Nov 07 '14 at 00:51
-
1Its good to note that $\infty = \lim_{x \rightarrow 0} 1/x $ is not the same as $0^{-1}$ – aram Nov 07 '14 at 01:33
2 Answers
$$ 0^{-1}=\frac{1}{0}=\mbox{undefined} $$ because $$ \lnot\exists x\in\mathbb{R}:1=0\times x $$

- 9,045
-
3
-
2It means, there does not exist a real number $x$ such that $1=0\times x$. – k170 Feb 07 '21 at 06:22
-
¬ = not; ∃ = exists; ∈ℝ = any x belonging to the Real numbers set; : = such that; × = times. Please note that × are two different x signs, even different from the x letter. – AMDP Oct 10 '23 at 16:49
Strictly speaking we say $0^{-1}$ is undefined.
$x^{-1}$ is the multiplicative inverse of the number $x$. By definition of the multiplicative inverse, the product of a number and its multiplicative inverse equals one. So we would have $0\times 0^{-1} = 1$.
However, by definition of zero and multiplication, the product of zero and any number equals zero. So $0\times 0^{-1} = 0$.
So, unless $0=1$, these definitions conflict! Hence the multiplicative inverse of zero is undefined.
Another way.
We can examine the behaviour of the function $f(x)=x^{-1}$ as $x$ approaches zero. Plot the curve $y=1/x$ to visualise what is happening. (It is a hyperbola.)
On the right side, the limit of $x^{-1}$ tends towards positive infinitude as $x$ tends downwards to zero.
$$\lim_{0<x\to 0} \frac 1 x = +\infty$$
On the left side, the limit of $x^{-1}$ tends towards negative infinitude as $x$ tends upwards towards zero.
$$\lim_{0>x\to 0} \frac 1 x = -\infty$$
So there is a discontinuity in the function $f(x)= x^{-1}$ at $x=0$. Thus the quantity of $0^{-1}$ is indefinite.

- 6,416

- 129,094