Let $R$ be a ring with unit element and ideal, $M$, such that $R/M$ is a field. Prove $M$ is maximal ideal.
I know that because $R/M$ is a field, its only ideals are $(0)$ and itself. Also, I know that by the one-to-one correspondence between the ideals of $R$ and $R/M$. But how to I prove there is no ideal between $M$ and $R$? Is there any flaw in my reasoning here?