I have trouble with the method of solving limits using Taylor series.
Consider for example these limits: $$\begin{align*} \lim_{x\to 0^-} \frac{1 + \log(1 + \sin\sqrt{x}) - e^{\sqrt{x}}}{\tan\sqrt{x} -\sin\sqrt{x}} &= i\infty\\ \lim_{x\to 0^+}\frac{1 + \log(1 + \sin\sqrt{x}) - e^{\sqrt{x}}}{\tan\sqrt{x} -\sin\sqrt{x}} &= -\infty \end{align*}$$
In the numerator there are three functions: $\ln()$, $\sin()$ and $e^x$. Now, I know that the function on the same side of the fraction line must have the same $o(x)$, but is the same for the nested function? The $\sin$ function, must have the same $o(x)$ of the other two?