I know this is a duplicate but the other two haven't helped me much.
Fist attempt: Tried proving through double inclusion, but wasn't sure of how to convey being an element of one implied being an element of the other in either direction, although I suspect from left to right would be the easier of the two.
Second attempt: Tried proving equality directly, using the fact that the boundary of a set is equal to the set difference of its closure and interior, but struggled proving closure of union is a union of closures, or the interior of a union is a union of interiors.
I'm getting pretty frustrated and any help would be greatly appreciated!