How do i check convergence/divergence of this series whose nth term is :
$$(n^3 + 1 )^{1/3}-n$$
How do i check convergence/divergence of this series whose nth term is :
$$(n^3 + 1 )^{1/3}-n$$
Let : $ U_n = (n^3 + 1)^{\frac{1}{3}} -n = n*[ (1+\frac{1}{n^3})^{\frac{1}{3}} -1]$
$ (1+u)^a = 1 +a*u + o(u) $ ; when $u \rightarrow 0$
That gives: $ U_n = n*[(1+\frac{1}{3*n^3} +o(\frac{1}{n^3})) -1] = \frac{1}{3*n^2} +o(\frac{1}{n^2}) $
$\sum \frac{1}{n^2}$ converges, hence $\sum U_n$ converges as well
By the Bernoulli inequality: $$ (1+n^3)^{1/3}-n = n\left(\left(1+\frac{1}{n^3}\right)^{1/3}-1\right) \leq n\cdot\frac{1}{3n^3}=\frac{1}{3n^2}$$ hence: $$ \sum_{n=1}^{+\infty}\left((1+n^3)^{1/3}-n\right)\leq\frac{\zeta(2)}{3}=\frac{\pi^2}{18}.$$
Using the identity $\,a^3-b^3=(a-b)(a^2+ab+b^2)$, and consequently $\,a-b=\frac{a^3-b^3}{a^2+ab+b^2}$, we obtain (for $a=\sqrt[3]{n^3+1},\,b=n$) $$ (n^3+1)^{1/3}-n=\frac{(n^3+1)-n^3}{(n^3+1)^{2/3}+n(n^3+1)^{1/3}+n^2}= \frac{1}{(n^3+1)^{2/3}+n(n^3+1)^{1/3}+n^2}, $$ and $$ 0<\frac{1}{(n^3+1)^{2/3}+n(n^3+1)^{1/3}+n^2}\le\frac{1}{3n^2}. $$ Hence, our series converges due to the Comparison Test.
Key hint:
$$\left(1+{1\over n^3}\right)\le\left(1+{1\over3n^3}\right)^3$$
(which you can verify by expanding the right hand side).
Added later: Since others have given complete answers (and one of them has been accepted), I'll flesh out the hint here. The inequality implies
$$(n^3+1)^{1/3}-n=n\left(\left(1+{1\over n^3}\right)^{1/3}-1\right)\le n\left(\left(1+{1\over3n^3}\right)-1\right)={1\over3n^2}$$
The Comparison Test can now be brought to bear.