Solve for $\textbf{x}(t)$ from the system of differential equations $\textbf{x}' (t) = A \textbf{x}(t)$, where
$$ A =\begin{bmatrix} 0 & -1 & 0\\1 & 0 & 0\\ 0 & 0 & 1\\\end{bmatrix}$$
I did the following:
I found the characteristic polynomial, $|A - \lambda I| = (1-\lambda)(\lambda^2 +1) = 0$, thus $\lambda_1 = 1, \lambda_2 = i, \lambda_3 = -i$.
Now, for $\lambda_1$ the corresponding eigenvector is $\textbf{v}_1 = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$
For $\lambda_2$ the corresponding eigenvector is $\textbf{v}_2 = \begin{bmatrix} 1\\ -i\\ 0 \end{bmatrix}$
For $\lambda_3$ the corresponding eigenvector is $\textbf{v}_3 = \begin{bmatrix} 1\\ i\\ 0 \end{bmatrix}$
Thus $V = \begin{bmatrix} 0 & 1 & 1\\ 0 &-i & i\\ 1 &0 &0 \end{bmatrix}$
Next, I want to use this: $c_1 e^{\lambda_1 t}\textbf{v}_1 + c_2 e^{\lambda_2 t}\textbf{v}_2 + c_3 e^{\lambda_3 t}\textbf{v}_3$.
\begin{align}
\textbf{x}(t) &= c_1 e^{\lambda_1 t}\textbf{v}_1 + c_2 e^{\lambda_2 t}\textbf{v}_2 + c_3 e^{\lambda_3 t}\textbf{v}_3\
\textbf{x}(t) &= c_1 e^{t}$\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$ + c_2 e^{i t}$\begin{bmatrix} 1\\ -i\\ 0 \end{bmatrix}$ + c_3 e^{-i t}$\begin{bmatrix} 1\\ i\\ 0 \end{bmatrix}$
\end{align}