$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{{\rm I}\pars{m}\equiv\int_{0}^{\pi/2}
{\tan\pars{x} \over 1 + m^{2}\tan^{2}\pars{x}}\,\dd x
= {\ln\pars{\verts{m}} \over m^{2} - 1}:\ {\large ?}}$.
\begin{align}
{\rm I}\pars{m}&
=\color{#66f}{\large\int_{0}^{\pi/2}{\sin\pars{x}\cos\pars{x}\over
\cos^{2}\pars{x} + m^{2}\sin^{2}\pars{x}}\,\dd x}
\\[5mm]&=\half\int_{0}^{\pi/2}{\sin\pars{2x}\over
\bracks{1 + \cos\pars{2x}}/2 + m^{2}\bracks{1 - \cos\pars{2x}}/2}\,\dd x
\\[5mm]&=\int_{0}^{\pi/2}{\sin\pars{2x}\over
1 + m^{2} + \pars{1 - m^{2}}\cos\pars{2x}}\,\dd x
\\[5mm]&=\left.{\ln\pars{1 + m^{2} + \bracks{1 - m^{2}}\cos\pars{2x}}\over
-2\pars{1 - m^{2}}}
\right\vert_{\, x\ =\ 0}^{\, x\ =\ \pi/2}
\\[5mm]&={\ln\pars{2m^{2}} - \ln\pars{2}\over 2\pars{m^{2} - 1}}
=\color{#66f}{\large{\ln\pars{\verts{m}} \over m^{2} - 1}}
\end{align}