2

$\displaystyle \sum_{n=1}^{\infty} \left(x^{3n-2} - x^{3n+1}\right)$

We can't simplify anything any more. Except.

$\displaystyle \sum_{n=1}^{\infty} \left( \frac{x^{3n}}{x^2} - \frac{x^{3n}x^3}{x^2} \right)$

$\displaystyle \sum_{n=1}^{\infty} \frac{x^{3n}(1 - x^3)}{x^2}$

Rory Daulton
  • 32,288
Amad27
  • 10,465
  • Write out the terms of the sum in its original form and you will see how they cancel. You can write down the expression for the (finite) partial sums, and take the limit, if it exists. – Mark Bennet Nov 02 '14 at 17:43

2 Answers2

5

$\displaystyle S=\sum_{n=1}^{\infty} x^{3n-2} - x^{3n+1}=\dfrac{1-x^3}{x^2}\sum_{n=1}^\infty(x^3)^n$

If $|x^3|\le1,$ using Infinite Geometric Series Formula Derivation,

$\displaystyle S=\frac{1-x^3}{x^2}\cdot\dfrac{x^3}{1-x^3}=x$

3

Just to expand my comment a little, the sum begins $$(x-x^4)+(x^4-x^7)+(x^7-x^{10}) \dots$$

The sum of the first $n$ terms is clearly $x-x^{3n+1}$ (e.g. prove by induction).

Take the limit as $n\to \infty$

Mark Bennet
  • 100,194