Use mathematical induction to prove that $\forall n\in \mathbb{N}$, $$\sum ^{n}_{i=1}i^{3}=\dfrac {n^{2}(n+1)^{2}}{4}$$
$$\begin{align*} \sum_{k=1}^{n+1} k^3 &= \sum_{k=1}^{n} k^3 + (n+1)^2 \stackrel{\rm(IH)}{=} \dfrac {n^{2}(n+1)^{2}}{4} + (n+1)^2 \\ &= \dfrac {n^{2}(n+1)^{2}+4(n+1)^2}{4} \end{align*}$$
Is it true? What to do next?