How can I evaluate this limit?
$$\lim\limits_{x\to\infty}\left(\dfrac x{x+1}\right)^x.$$
Hm I can't take this limit. I know what I have to use, but I can't. Sorry about this. Who can do it for example?
How can I evaluate this limit?
$$\lim\limits_{x\to\infty}\left(\dfrac x{x+1}\right)^x.$$
Hm I can't take this limit. I know what I have to use, but I can't. Sorry about this. Who can do it for example?
Let $f(x)=\left(\frac{x}{x+1}\right)^x$. Find the limit $$ \lim_{x\rightarrow\infty}\ln(f(x)). $$
$$\lim_{x\to\infty}\Bigl(\frac x{1+x}\Bigr)^x=\lim_{x\to\infty}\Bigl(\frac{x-1}x\Bigr)^{x-1}=\lim_{x\to\infty}\Bigl(1-\frac1x\Bigr)^{x-1}=\lim_{x\to\infty}\Bigl(1-\frac1x\Bigr)^x\Big/\Bigl(1-\frac1x\Bigr)=e^{-1}/\,1=1/e$$
Suince nobody wrote the expression I was thinking of, I will:
$$\frac x{x+1}=\frac1{\frac{x+1}x}=\frac1{1+\frac1x}\implies\left(\frac x{x+1}\right)^x=\frac1{\left(1+\frac1x\right)^x}\xrightarrow[x\to\infty]{}\frac1e$$
Notice that $(\frac{x}{x+1})^x=(1-\frac{1}{x+1})^{x+1}\cdot \frac{1}{1-\frac{1}{x+1}}$ and use $\lim_{x\to \infty}(1+\frac 1x)^x=e$