I'm trying to verify the solution of St.Peterburg paradox: http://en.wikipedia.org/wiki/St._Petersburg_paradox#Solutions_of_the_paradox when W = c = 2.
$$\sum_{t=1}^{\infty}2^{-t}\left(\ln\left(W+2^{t-1}-c\right)-\ln W\right)=0$$
In terms of math, I need to check if the LHS of the expression above equals to 0 when W=c=2.
$$\Leftrightarrow\sum_{t=1}^{\infty}2^{-t}\left(\left(t-1\right)\ln2-\ln2\right)=0\Leftrightarrow$$
$$\Leftrightarrow\sum_{t=1}^{\infty}2^{-t}\left(t-2\right)\ln2=0\Leftrightarrow\sum_{t=1}^{\infty}2^{-t}\left(t-2\right)=0\Leftrightarrow\sum_{t=1}^{\infty}\frac{t}{2^{t}}-2\sum_{t=1}^{\infty}\frac{1}{2^{t}}=0\Leftrightarrow$$
$$\Leftrightarrow\sum_{t=1}^{\infty}\frac{t}{2^{t}}-2\left(\frac{0.5}{1-0.5}\right)=0\Leftrightarrow\sum_{t=1}^{\infty}\frac{t}{2^{t}}=2$$
How to prove, assuming that I didn't make a mistake previously, that $\sum_{t=1}^{\infty}\frac{t}{2^{t}}=2$.