So I've read a book and found myself stumped in this integral:
$$\int_{0}^{\pi} \frac{\cos(n\theta)}{b^2-a^2\cos(2\theta)}\, d\theta=\begin{cases} \,\,0 &,\quad\mbox{if}\,\, n\,\,\mbox{is odd}\\[20pt] \,\,\dfrac{\pi}{\sqrt{b^4-a^4}}\left(\dfrac{\sqrt{b^2-\sqrt{b^4-a^4}}}{a}\right)^n&,\quad\mbox{if}\,\, n\,\,\mbox{is even}\\ \end{cases}$$ where $b>a$.
Anyone knows how to evaluate it? Or knows a reference for helping me to prove formula above?