0

what is the the summation $S_n = \sum\limits_{n = 1}^\infty{b_n} $ with $b_n = n{\alpha}^n$?

Here $0 \le \alpha < 1$. any closed form solution?

I know maybe we should build a geometric sequence or arithmetic sequence from $b_n$, but how to do that?

zxzx179
  • 1,507

4 Answers4

2

If you dont know differentiation then use the fact that $$\begin{aligned}S_n-\alpha S_n & =\sum_{n=1}^{\infty} n\alpha^n-\sum_{n=1}^{\infty} n\alpha^{n+1}\\ & =\alpha+\sum_{n=2}^{\infty} n\alpha^n-\sum_{n=2}^{\infty} (n-1)\alpha^{n} \\ & =\alpha+\sum_{n=2}^{\infty} (n-n+1)\alpha^n \\ & = \sum_{n=1}^{\infty} \alpha^{n}\end{aligned}$$ Finish it! If you want to be more rigorous first show that $S_n$ converges

Sayan
  • 2,688
  • You dont need to use convergence if you use limits, i.e., just using undefined finite sums and after see what happen when $\text{upper limit}\to\infty$ – Masacroso Nov 01 '14 at 12:59
0

The usual geometric series formula is $\displaystyle\sum_{n = 0}^{\infty}\alpha^n = \dfrac{1}{1-\alpha}$.

Differentiate both sides with respect to $\alpha$ to get $\displaystyle\sum_{n = 1}^{\infty}n\alpha^{n-1} = \dfrac{1}{(1-\alpha)^2}$.

Do you see how to get the formula for the series you asked about?

JimmyK4542
  • 54,331
0

HINT: $(1/(1-x))'=\left(\sum_{n=0}^{\infty}x^n\right)'$.

Przemysław Scherwentke
  • 13,668
  • 5
  • 35
  • 56
0

We know that $$\sum_{n=1}^{\infty}x^{n}=\frac{1}{1-x}$$ if $|x|<1$. Differentiate both sides with respect to $x$ to get $$\sum_{n=1}^{\infty}(n-1)x^{n}=\frac{1}{(1-x)^2}$$ Hence $$\sum_{n=1}^{\infty}nx^n=\sum_{n=1}^{\infty}(n-1)x^{n}+\sum_{n=1}^{\infty}x^{n}=\frac{1}{(1-x)^2}+\frac{1}{1-x}$$ Put $x=\alpha$ to get the required result.

QED
  • 12,644