I am self-learning basic optimization theory and algorithms from "An Introduction to Optimization" by Chong and Zak. I would like someone to verify my solution to this problem, on finding the minimizer/maximizer of a function of two variables, or any tips/hint to proceed ahead.
For each value of the scalar $\beta$, find the set of all stationary points of the following two variables $x$ and $y$
$$f(x,y) = x^2 + y^2 + \beta xy + x + 2y$$
Which of those stationary points are local minima? Which are global minima and why? Does this function have a global maximum for some value of $\beta$.
Solution.
We have:
\begin{align*} f(x,y) &= x^2 + y^2 + \beta xy + x +2y\\ f_x(x,y) &= 2x+\beta y + 1\\ f_y(x,y) &= \beta x + 2y + 2\\ f_{xx}(x,y) &= 2\\ f_{xy}(x,y) &= \beta \\ f_{yy}(x,y) &= 2 \end{align*}
By the first order necessary condition(FONC) for optimality, we know that if $\nabla f(\mathbf{x})=0$, then $\mathbf{x}$ is a critical point.
Thus,
\begin{align*} f_x(x,y) &= 2x+\beta y + 1 = 0\\ f_y(x,y) &= \beta x + 2y + 2 = 0 \end{align*}
Solving for $x$ and $y$, we find that:
\begin{align*} x = \frac{\begin{array}{|cc|} -1 & \beta \\ -2 & 2 \end{array}}{\begin{array}{|cc|} 2 & \beta \\ \beta & 2 \end{array}}=\frac{-2+2\beta}{4-\beta^2}=\frac{2\beta-2}{4 -\beta^2} \end{align*} \begin{align*} y = \frac{\begin{array}{|cc|} 2 & -1 \\ \beta & -2 \end{array}}{\begin{array}{|cc|} 2 & \beta \\ \beta & 2 \end{array}}=\frac{-4+\beta}{4-\beta^2}=\frac{\beta -4}{4 - \beta^2} \end{align*}
The second order necessary and sufficient conditions for optimality are based on the sign of the quadratic form $Q(\mathbf{h})=\mathbf{h}^T \cdot Hf(\mathbf{a}) \cdot \mathbf{h}$.
The Hessian of $f$ is given by,
$$Hf(\mathbf{x})=\begin{array}{|c c|} 2 & \beta \\ \beta & 2 \end{array}$$
Thus, $d_1 = 2 > 0$ and $d_2 = 4 - \beta^2$. Thus, $f$ has a local minimizer if and only if $4 - \beta^2 > 0$. $g(\beta) = 4 - \beta^2$ is a downward facing parabola. So, the values of this expression positive, if and only if $-2 < \beta < 2$. The function $f$ has no global maximum.
Question. How do I find the actual global minima?