Questions tagged [term-rewriting]

Term rewriting is a general model of computation that investigates a wide range of (potentially non-deterministic) methods of replacing subterms of syntactic expression, more precisely an element of a term-algebra (over some set of variables) with other terms.

70 questions
12
votes
3 answers

Why Term Rewriting?

I've done a bit of googleing and have come up a bit short. I am wondering what are the main reasons for computing scientists, programmers, to study term rewriting, and/or term graph rewriting. As far as I can tell, it just helps for basic reasoning…
Musa Al-hassy
  • 884
  • 1
  • 5
  • 9
6
votes
1 answer

Properties of a term rewrite rule

While doing some bibliography on term-rewriting, I often found these two properties to define a term rewrite rule (see for example here and this one): A term rewrite rule is a pair $\langle l,r\rangle$ of terms, written $l \rightarrow r$, such…
noutoff
  • 63
  • 5
4
votes
2 answers

Misunderstanding the Church-Rosser property

I am contemplating the Church-Rosser property and I clearly misunderstand it, but I do not exactly know why. If $x$ and $y$ are such that $x \overset{*}{\leftrightarrow} y$, then $x \overset{*}{\rightarrow} y$ and since $y \overset{*}{\rightarrow}…
Alex M.
  • 145
  • 6
3
votes
1 answer

Semi-Thue system, which terminates

I observed that with rewrite rules: $abb \rightarrow bab $ $baa \rightarrow aba $ Every derivation ends, moreover, if there is same amount of $a$'s and $b$'s in input, then derivation ends in $(ab)^*+(ba)^*$. Why do these two properties hold?
2
votes
0 answers

Name for "confluence unless both sides are normal"

I am looking for a name for the property $\mathbf{?_2}$ (and for that, it is sufficient to find a name for the property $\mathbf{?_1}$ since "Uniform" could then be added in front of it). Confluence : If $t_1\leftarrow^* t \rightarrow ^* t_2$, then…
xavierm02
  • 1,255
  • 6
  • 14
2
votes
1 answer

What is a rewrite-based system?

I am reading about this in the context of the K semantic framework. I keep encountering terms such as rewrite-term and rewrite logic. My main aim is to understand what is K doing and how it works, so maybe this would be a bit off-topic.
yldm
  • 23
  • 3
1
vote
0 answers

Adding ground rules to term rewriting system

Suppose we have a term rewriting system $\mathcal{R} = (\Sigma, R)$ with signature $\Sigma$ and set of basic rewrite rules $R$. Suppose we also have a set $S$ of ground rewrite rules, i.e. rewrite rules where both terms are ground terms. For my…
User7819
  • 281
  • 1
  • 6
1
vote
0 answers

term rewriting vs symbolic programming

I have recently discovered term rewriting when I watched this video - https://channel9.msdn.com/Series/Beckman-Meijer-Overdrive/Beckman-Meijer-Overdrive-The-Lambda-Calculus-and-Food-Nutrition It seems that term rewriting is a generalization of which…
phil
  • 111
  • 2
1
vote
0 answers

Give a finite set of identities $E$ such that the ground word problem is decidable, but the word problem is not

I am studying term rewriting using Baader and Nipkow's book "Term Rewriting and All That". I am trying to solve the following exercise about word problems: 4.1 Give a trivial example of a finite set of identities $E$ such that the ground word…
1
vote
2 answers

Term-rewriting software recommendation

Is there an easy to use software that implements term-rewriting? Or do I need to write my own parser for it? I am looking for something that will take in a fixed set of user-specified rules and will be able to reduce arbitrary terms under those…
0
votes
1 answer

Proof of Simple Properties About Terms, Position of Subterms and Replacement of Subterms

I am studying term rewriting by reading Baader/Nipkow's book: "Term Rewriting and All That". I want to prove a lemma about terms, position of subterms and replacement of subterms. The notation is as follows: $s|_{p}$ denotes the subterm of $s$ at…