To prove that the set $\mathrm{DIAG} = \{\langle M\rangle \mid \langle M\rangle \notin L(M)\}$ is not decidable, we can assume, to the contrary, that there is a Turing Machine $M$ such that $L(M) = \mathrm{DIAG}$. Consider the string $\langle M\rangle$. By definition of $\mathrm{DIAG}$, $\langle M\rangle \in \mathrm{DIAG} \Leftrightarrow \langle M\rangle \notin L(M)$. But since $L(M) = \mathrm{DIAG}, \langle M\rangle \notin L(M) \Leftrightarrow \langle M\rangle \notin \mathrm{DIAG}$. So $\langle M\rangle \in \mathrm{DIAG} \Leftrightarrow \langle M\rangle \notin \mathrm{DIAG}$, which is impossible.
I don't know how to extend this proof to prove that $DD = \{\langle M\rangle \mid \langle M\rangle\langle M\rangle \notin L(M)\}$ is not decidable. Can someone show how to do this?