Given $L=\{a^nb^mc^k | \ n=m \ \vee m \neq k \}$ you can see it as $L=L_1 \cup L_2$ where:
- $L_1=\{a^nb^mc^k | \ n=m\}$
- $L_2=\{a^nb^mc^k | \ m \neq k\}$
Then you define 2 Context free grammars $G_1$ and $G_2$ for the 2 languages and in order to express the OR condition your add the production rule
$S \rightarrow S_1\ | \ S_2$
where $S$ is the starting symbol for $G$, $S_1$ for $G_1$ and $S_2$ for $G_2$.
As suggested in the comments, $L_1$ and $L_2$ can be splitted in order to make it easier the design of the grammars.
$L_1=L_{1,1} \cdot L_{1,2}$ where:
- $L_{1,1}=\{ a^nb^n | \ n \geq 0 \ \}$
- $L_{1,2}=\{ c^k | \ k \geq 0\ \}$
$L_2=L_{2,1} \cdot (L_{2,2} \vee L_{2,3})$ where:
- $L_{2,1}=\{a^n \ | \ n \geq 0\}$
- $L_{2,2}=\{b^mc^k | \ m < k\}$
- $L_{2,3}=\{b^mc^k | \ m > k\}$