I am going through Normal Subgroup Reconstruction and Quantum Computation Using Group Representations by Hallgren et al.
In the proof of the theorem $6$ of the paper on page 632, the authors go on proving the difference between the probabilities of sampling all irreps, $|p - q|_1$ of a subgroup inside the symmetric group $S_n$.
$$ \begin{align} |p - q|_1 &= \Sigma_{\rho} \mid p_{\rho} - q_{\rho} \mid \\ &\le \Sigma_{\rho} \frac{d_{\rho}}{n!} 2^{O(n)} \sqrt{n}^{n / 2} \\ &\le \Sigma_{\rho} \frac{\sqrt{n!}}{n!} 2^{O(n)} \sqrt{n}^{n / 2} \\ &\le \frac{2^{O(n)} \sqrt{n}^{n/2}}{\sqrt{n!}} \\ &= 2^{O(n)} \frac{\sqrt{\sqrt{n}^n}} {\sqrt{n!}} \\ &\le 2^{O(n)} \frac{1}{\sqrt{\left( n / 2 \right)!}} \lll 2^{-\Omega(n)} \end{align} $$
How is $2^{O(n)} \frac{1}{\sqrt{\left( n / 2 \right)!}} \lll 2^{-\Omega(n)}$?