0

I can't figure out how to solve this recurrence relation using the iteration method:

$$T(n) = \begin{cases} 0, & \text{if $n=0$} \\ 1, & \text{if $n=1$} \\ 3T(n-1)+ 4T(n-2), & \text{if $n >1$} \end{cases}$$

David Richerby
  • 81,689
  • 26
  • 141
  • 235
mayhem
  • 9
  • 1

1 Answers1

1

Hint: Let $S(n) = T(n+1) + T(n)$. We have $S(0) = 1$, and for $n > 0$, $$ S(n) = T(n+1) + T(n) = [3T(n) + 4T(n-1)] + T(n) = 4(T(n) + T(n-1)) = 4S(n-1). $$ Can you take it from here?

Yuval Filmus
  • 276,994
  • 27
  • 311
  • 503