$O(x^{10})$ is $O(x^k)$ for some constant $k$ (polynomial complexity) whereas $O(2^{\sqrt{x}})=O(2^{x^k})$ is subexponential by definition.
Using De l'Hôpital's rule, you can find the following:
$
\lim_{x\rightarrow\infty} \displaystyle\frac{x^{10}}{2^{\sqrt{x}}} = \lim_{x\rightarrow\infty} \frac{\frac{\delta x^{10}}{\delta x}}{\frac{\delta 2^{\sqrt{x}}}{\delta x}}=0
$
which shows that the denominator grows faster than the numerator. You can actually differentiate the fraction until you get a constant numerator while the denominator will always stay a function of $x$.